

Array

• An array is a group of similar data items sharing a common name. Each

element of an array has a unique Index number.

• Array is always stored at Contiguous (ones after the other) memory

location

• The lowest address corresponds to the first element and the highest address

to the last element.

first element last element

num[0] num[1] num[2] --------------

• Array is a derived data type.
• It is a collection of the same data elements. Each element of an array has a

unique index number. Each element of an array can be accessed with the

combination of array name and the Index number.

• An array with a single index number is called single dimensional array and

the array with two subscripts for a single element is called two dimensional

arrays.

The index is enclosed in brackets after array name

eg. int a[10];

data type subscript or Index

name of array

Array Declaration:

Like other variables, an array has to be declared before it is used to declare an

array, we must provide the following information:-

1. Data type of an array.

2. The name of the array.

3. The number of indexes (subscripts) in an array.

4. The maximum value of each subscript.

Syntax for declaring an array

data._type array name [n]

It is the data type. name of the array It is the size of an array .

(int ,float, char)

eg(i) int a [10]; (one-dimensional array because of one subscript)

 int specifies the type of variable.

 a is the name of the array variable.
 [10] is the subscript

 10 elements stored in this array.

eg(ii) int a [5] [6]; (two dimensional array because of two subscript)

Index1 Index2

Types of Array

1 Single dimensional Array. Or One dimensional array.

2. Two dimensional Array.

3. Multi dimensional Array.

1. Single dimensional array

A Single dimensional array has only a single Subscript. The subscript number

can identify the number of individual elements in the array. They take

contiguous memory locations either Column wise or row wise.

Syntax:-

<datatype><arrayname> [size of an array];

for example

int ar[10];

data type. name of size of an array .
(int ,float, char) the array

Memory Representation of Single Dimensional Array

int ar [10]={ 20,30,40,50,60,70,80,90,100,110};

Row wise

Storage Index

20 ar[0]

30 ar[1]

40 ar[2]

50 ar[3]

60 ar[4]

70 ar[5]

80 ar[6]

90 ar[7]

100 ar[8]

110 ar[9]

Column wise
Index 0 1 2 3 4 5 6 7 8 9

Storage 20 30 40 50 60 70 80 90 100 110

 Initialization of One - dimensional Array

One dimensional array can be declared and Initialized at the same place
following are the different ways to initialize arrays.

Syntax:

<datatype><name of the array> (size is optional>= {assigned value}

eg1:- int st [5] = {10,20,30,40,50}

10 BYTES

2 bytes

2 5 6 8 9

st[0] st[1] st[2] st[3] st[4]

eg2:- int i [10] = {10,20,30,40,50}

It will take the first five elements as it is and next five as the Garbage values.

Example of 1-D Array

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

int arr[5];

int i;

for(i=0;i<5;i++)

{

printf(“Enter the array elements”);

scanf(“%d”,&arr[i]);

}
printf(“\n Printing elements of array”);

for(i=0;i<5;i++)

{

printf(“%d\t”,arr[i]);

}

getch();

}

2 Two Dimensional Array
Two-dimensional array identified by two subscripts - A 2-d array is also

referred as a matrix or grid. A matrix has two subscripts. One subscript tells

us the number of rows and the second subscript tells us about the columns.

Syntax
<datatype><arrayname>[no of rows][no of coloumns];

for example

int m[10] [20];

datatype matrix rows coloumns

Here m is declared as a matrix having 10 rows and 20 Columns.

Memory Representation of Two-dimensional Array

Memory does not have any concept of rows and columns. It stores the

elements in one continuous chain whether it is one-dimensional array or more

than one dimensional array.

int at2] [3] = {10,20,30,40,50,60}

Memory map

 Col 1 Col 2 Col 3

Row 0 10 20 30

Row 1 40 50 60

Memory Map in actual Memory

10 a[0][0]

20 a[0][1]

30 a[0][2]

40 a[1][0]

50 a[1][1]

60 a[1][02]

Initialization Of Two dimensional Array

The general form of initializing 2-D array is :
data-type array-name [row size] [column Size]{{list of row values}, {list of Col values}};

eg1:- int st[2][3]={0,0,0,1,1,1};

OR

int st[2][3]={ {0,0,0},{1,1,1})
Note when we Initializing 2-c array, we have to mention the second

dimension. Whereas first dimension is optional.

Example int [2] [] = {10,20,30} // Never work

int [] [3] = {10,20,30} // Yes

Example of 2-D Array

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

int arr[2][2];

int I,j;

for(i=0;i<2;i++)
{

for(j=0;j<2;j++)

{
printf(“Enter the array elements”);

scanf(“%d”,&arr[i][j]);

}

printf(“\n”);
}

printf(“\n Printing elements of array”);

for(i=0;i<2;i++)

{
for(j=0;j<2;j++)

{

printf(“%d\t”,arr[i][j]);

}
printf(“\n”);

}

getch();

}

Multidimensional Array
 A multidimensional array has more than one subscript .A two-

dimensional array has two subscripts, a three dimensional array has

three subscripts and so on. There is no limit to the number of

dimensions the C array can have.

 Two dimensional array and more than two dimensional arrays are

under the category of multidimensional array.

 C allows more than 2-d arrays but in practice more than two

dimensions are rarely used.

 Multidimensional array can be used in the same manner as two-

dimensional arrays.

The General form of a Multidimensional Array: -

type array name [s1] [s2]... [sn];

The number of size specifies depend upon the dimension of the array

for example

int a [3] [5] [12];

float num [5] [4[5] [3] ;

 a is a three dimensional array.

 num is four dimensional array.

#include <stdio.h>

#include<conio.h>

void main()

{

intat2] [2], b[2] [2], i, j;
printf(“Enter the elements of A matrix \n”);

for (i=0; i< 2; i++)

{

for (j = 0; j <2; j++)

{
printf ("Enter the number");

scanf ("%d",&a[i][j]);

}

}
printf(“ Enter the elements of B matrix \n”);

for (i=0; i< 2; i++)

{

for (j = 0; j <2; j++)

{

printf("Enter the number");

scanf("%d",&b[i][j]);

}
}

printf ("Addition of A and B Matrix \n”);

for (i=0; 1<2; i++)

{
for(j=0; j <2; j++)

{

printf ("%d", a[i][j] + b[i][j]);
}

printf ("\n");

}

getch();
}

WAP to find the sum of two Matrices IMP

Advantages of Array: -

1. It is the simplest kind of data Structure.

2. The calculation of matrices become easy with the use of arrays
3. Arrays make loops very effective.

4. We can refer to a group of elements by a single name.

5. The method of Accessing array elements is very simple.

6. Easy to declare array elements.
7. All array elements can store and accessed with a single variable name.

Disadvantages of Array:

1. Sometimes It's not easy to work with many Index arrays.

2. The size of the array should be known in advance.
3. Wastage of Memory

4. Arrays will always hold similar kinds of information So it is impossible

to store unrelated information to the array.

5. Array are largely Static

Passing Array to function
We Pass arrays to function when we need to pass a list of values to a given

function.

The array elements can be passed to a function by two methods.
1. Calling the function by value

2. Calling the function by reference

1 Calling the function by value:- In call by value

Method, we pass the values of array elements to the function .

Example:

#include <stdio.h>

#include <conio.h>

void show (int a)

{

printf("%d\t", a);

}
void main()

{

clrscr();

int a[]={ 10,20,30,40 60};

printf ("The elements of Array : \n");

for (int i = 0; i < 5; i++)

{

show (a[i]);
}

getch();

}

2. Calling the function by Reference -

In call by Reference, we pass the address of array elements to the function.

Example:

#include <stdio.h>

#include <conio.h>

void show (int *a)

{

printf("%d\t", a);
}

void main()

{

clrscr();
int a[]={ 10,20,30,40 60};

printf ("The elements of Array : \n");

for (int i = 0; i < 5; i++)

{
show (&a[i]);

}

getch();

}

Pass Entire Array to the function

In place of passing individual elements of an array one by one to a function,

we can also pass an entire array to a function.

 Example
#include <stdio.h>
#include <conio.h>
void main()

{

int arrl[]={10,20,30,40,50};

clrscr();

show (arr,5);

getch();

}

show (int *a, int size)

{

int i;

for (i = 0; i<size; i++)

{
printf ("\n%d",*a);

a++;

}

}

